Low level or primitive items in a .pst file are identified by an I_ID value. Higher level or composite items in a .pst file are identified by a D_ID value. There are two separate b-trees indexed by these I_ID and D_ID values. Starting with Outlook 2003, the file format changed from one with 32 bit pointers, to one with 64 bit pointers. We describe both formats here.
The 32 bit file header is located at offset 0 in the .pst file.
0000 21 42 44 4e 49 f8 64 d9 53 4d 0e 00 13 00 01 01 0010 00 00 00 00 00 00 00 00 50 d6 03 00 bd 1e 02 00 0020 08 4c 00 00 00 04 00 00 00 04 00 00 0f 04 00 00 0030 0d 40 00 00 99 0a 01 00 18 04 00 00 0d 40 00 00 0040 0d 40 00 00 11 80 00 00 02 04 00 00 0a 04 00 00 0050 00 04 00 00 00 04 00 00 0f 04 00 00 0f 04 00 00 0060 0f 04 00 00 0d 40 00 00 00 04 00 00 00 04 00 00 0070 04 40 00 00 00 04 00 00 00 04 00 00 00 04 00 00 0080 00 04 00 00 00 04 00 00 00 04 00 00 00 04 00 00 0090 00 04 00 00 00 04 00 00 00 04 00 00 00 04 00 00 00a0 0c 09 00 00 00 00 00 00 00 04 27 00 00 24 23 00 00b0 c0 09 0a 00 00 c8 00 00 bc 1e 02 00 00 7e 0c 00 00c0 b4 1e 02 00 00 54 00 00 01 00 00 00 23 55 44 d1 00d0 5a 4f ce 6b 80 ff ff ff 00 00 00 00 00 00 00 00 00e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0140 00 00 00 00 00 00 00 00 00 00 00 00 3f ff ff ff 0150 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 0160 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 0170 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 0180 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 0190 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01a0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01b0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01c0 ff ff ff ff ff ff ff ff ff ff ff ff 80 01 00 00 01d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 signature [4 bytes] 0x4e444221 constant 000a indexType [1 byte] 0x0e constant 01cd encryptionType [1 byte] 0x01 in this case 00a8 total file size [4 bytes] 0x270400 in this case 00c0 backPointer1 [4 bytes] 0x021eb4 in this case 00c4 offsetIndex1 [4 bytes] 0x005400 in this case 00b8 backPointer2 [4 bytes] 0x021ebc in this case 00bc offsetIndex2 [4 bytes] 0x0c7e00 in this case
We only support index types 0x0e, 0x0f, 0x15, and 0x17, and encryption types 0x00, 0x01 and 0x02. Index type 0x0e is the older 32 bit Outlook format. Index type 0x0f seems to be rare, and so far the data seems to be identical to that in type 0x0e files. Index type 0x17 is the newer 64 bit Outlook format. Index type 0x15 seems to be rare, and according to the libpff project should have the same format as type 0x17 files. It was found in a 64-bit pst file created by Visual Recovery. It may be that index types less than 0x10 are 32 bit, and index types greater than or equal to 0x10 are 64 bit, and the low order four bits of the index type is some subtype or minor version number.
Encryption type 0x00 is no encryption, type 0x01 is "compressible" encryption which is a simple substitution cipher, and type 0x02 is "strong" encryption, which is a simple three rotor Enigma cipher from WWII.
offsetIndex1 is the file offset of the root of the index1 b-tree, which contains (I_ID, offset, size, unknown) tuples for each item in the file. backPointer1 is the value that should appear in the parent pointer of that root node.
offsetIndex2 is the file offset of the root of the index2 b-tree, which contains (D_ID, DESC-I_ID, TREE-I_ID, PARENT-D_ID) tuples for each item in the file. backPointer2 is the value that should appear in the parent pointer of that root node.
The 64 bit file header is located at offset 0 in the .pst file.
0000 21 42 44 4e 03 02 23 b2 53 4d 17 00 13 00 01 01 0010 00 00 00 00 00 00 00 00 04 00 00 00 01 00 00 00 0020 8b 00 00 00 00 00 00 00 1d 00 00 00 00 04 00 00 0030 00 04 00 00 04 04 00 00 00 40 00 00 02 00 01 00 0040 00 04 00 00 00 04 00 00 00 04 00 00 00 80 00 00 0050 00 04 00 00 00 04 00 00 00 04 00 00 00 04 00 00 0060 04 04 00 00 04 04 00 00 04 04 00 00 00 04 00 00 0070 00 04 00 00 00 04 00 00 00 04 00 00 00 04 00 00 0080 00 04 00 00 00 04 00 00 00 04 00 00 00 04 00 00 0090 00 04 00 00 00 04 00 00 00 04 00 00 00 04 00 00 00a0 00 04 00 00 00 04 00 00 02 04 00 00 00 00 00 00 00b0 00 00 00 00 00 00 00 00 00 24 04 00 00 00 00 00 00c0 00 44 00 00 00 00 00 00 00 71 03 00 00 00 00 00 00d0 00 22 00 00 00 00 00 00 83 00 00 00 00 00 00 00 00e0 00 6a 00 00 00 00 00 00 8a 00 00 00 00 00 00 00 00f0 00 60 00 00 00 00 00 00 01 00 00 00 00 00 00 00 0100 ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0180 7f ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 0190 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01a0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01b0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01c0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01d0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01e0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 01f0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 0200 80 00 00 00 e8 00 00 00 00 00 00 00 c4 68 cb 89 0000 signature [4 bytes] 0x4e444221 constant 000a indexType [1 byte] 0x17 constant 0201 encryptionType [1 byte] 0x00 in this case 00b8 total file size [8 bytes] 0x042400 in this case 00e8 backPointer1 [8 bytes] 0x00008a in this case 00f0 offsetIndex1 [8 bytes] 0x006000 in this case 00d8 backPointer2 [8 bytes] 0x000083 in this case 00e0 offsetIndex2 [8 bytes] 0x006a00 in this case
The 32 bit index1 b-tree nodes are 512 byte blocks with the following format.
0000 04 00 00 00 8a 1e 02 00 00 1c 0b 00 000c 58 27 03 00 b3 1e 02 00 00 52 00 00 0018 00 00 00 00 00 00 00 00 00 00 00 00 0024 00 00 00 00 00 00 00 00 00 00 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 003c 00 00 00 00 00 00 00 00 00 00 00 00 0048 00 00 00 00 00 00 00 00 00 00 00 00 0054 00 00 00 00 00 00 00 00 00 00 00 00 0060 00 00 00 00 00 00 00 00 00 00 00 00 006c 00 00 00 00 00 00 00 00 00 00 00 00 0078 00 00 00 00 00 00 00 00 00 00 00 00 0084 00 00 00 00 00 00 00 00 00 00 00 00 0090 00 00 00 00 00 00 00 00 00 00 00 00 009c 00 00 00 00 00 00 00 00 00 00 00 00 00a8 00 00 00 00 00 00 00 00 00 00 00 00 00b4 00 00 00 00 00 00 00 00 00 00 00 00 00c0 00 00 00 00 00 00 00 00 00 00 00 00 00cc 00 00 00 00 00 00 00 00 00 00 00 00 00d8 00 00 00 00 00 00 00 00 00 00 00 00 00e4 00 00 00 00 00 00 00 00 00 00 00 00 00f0 00 00 00 00 00 00 00 00 00 00 00 00 00fc 00 00 00 00 00 00 00 00 00 00 00 00 0108 00 00 00 00 00 00 00 00 00 00 00 00 0114 00 00 00 00 00 00 00 00 00 00 00 00 0120 00 00 00 00 00 00 00 00 00 00 00 00 012c 00 00 00 00 00 00 00 00 00 00 00 00 0138 00 00 00 00 00 00 00 00 00 00 00 00 0144 00 00 00 00 00 00 00 00 00 00 00 00 0150 00 00 00 00 00 00 00 00 00 00 00 00 015c 00 00 00 00 00 00 00 00 00 00 00 00 0168 00 00 00 00 00 00 00 00 00 00 00 00 0174 00 00 00 00 00 00 00 00 00 00 00 00 0180 00 00 00 00 00 00 00 00 00 00 00 00 018c 00 00 00 00 00 00 00 00 00 00 00 00 0198 00 00 00 00 00 00 00 00 00 00 00 00 01a4 00 00 00 00 00 00 00 00 00 00 00 00 01b0 00 00 00 00 00 00 00 00 00 00 00 00 01bc 00 00 00 00 00 00 00 00 00 00 00 00 01c8 00 00 00 00 00 00 00 00 00 00 00 00 01d4 00 00 00 00 00 00 00 00 00 00 00 00 01e0 00 00 00 00 00 00 00 00 00 00 00 00 01ec 00 00 00 00 02 29 0c 02 80 80 b6 4a 01f8 b4 1e 02 00 27 9c cc 56 01f0 itemCount [1 byte] 0x02 in this case 01f1 maxItemCount [1 byte] 0x29 constant 01f2 itemSize [1 byte] 0x0c constant 01f3 nodeLevel [1 byte] 0x02 in this case 01f8 backPointer [4 bytes] 0x021eb4 in this case
The itemCount specifies the number of 12 byte records that are active. The nodeLevel is non-zero for this style of nodes. The leaf nodes have a different format. The backPointer must match the backPointer from the triple that pointed to this node.
Each item in this node is a triple of (I_ID, backPointer, offset) where the offset points to the next deeper node in the tree, the backPointer value must match the backPointer in that deeper node, and I_ID is the lowest I_ID value in the subtree.
The 64 bit index1 b-tree nodes are 512 byte blocks with the following format.
0000 04 00 00 00 00 00 00 00 88 00 00 00 000C 00 00 00 00 00 48 00 00 00 00 00 00 0018 74 00 00 00 00 00 00 00 86 00 00 00 0024 00 00 00 00 00 54 00 00 00 00 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 003C 00 00 00 00 00 00 00 00 00 00 00 00 0048 00 00 00 00 00 00 00 00 00 00 00 00 0054 00 00 00 00 00 00 00 00 00 00 00 00 0060 00 00 00 00 00 00 00 00 00 00 00 00 006C 00 00 00 00 00 00 00 00 00 00 00 00 0078 00 00 00 00 00 00 00 00 00 00 00 00 0084 00 00 00 00 00 00 00 00 00 00 00 00 0090 00 00 00 00 00 00 00 00 00 00 00 00 009C 00 00 00 00 00 00 00 00 00 00 00 00 00A8 00 00 00 00 00 00 00 00 00 00 00 00 00B4 00 00 00 00 00 00 00 00 00 00 00 00 00C0 00 00 00 00 00 00 00 00 00 00 00 00 00CC 00 00 00 00 00 00 00 00 00 00 00 00 00D8 00 00 00 00 00 00 00 00 00 00 00 00 00E4 00 00 00 00 00 00 00 00 00 00 00 00 00F0 00 00 00 00 00 00 00 00 00 00 00 00 00FC 00 00 00 00 00 00 00 00 00 00 00 00 0108 00 00 00 00 00 00 00 00 00 00 00 00 0114 00 00 00 00 00 00 00 00 00 00 00 00 0120 00 00 00 00 00 00 00 00 00 00 00 00 012C 00 00 00 00 00 00 00 00 00 00 00 00 0138 00 00 00 00 00 00 00 00 00 00 00 00 0144 00 00 00 00 00 00 00 00 00 00 00 00 0150 00 00 00 00 00 00 00 00 00 00 00 00 015C 00 00 00 00 00 00 00 00 00 00 00 00 0168 00 00 00 00 00 00 00 00 00 00 00 00 0174 00 00 00 00 00 00 00 00 00 00 00 00 0180 00 00 00 00 00 00 00 00 00 00 00 00 018C 00 00 00 00 00 00 00 00 00 00 00 00 0198 00 00 00 00 00 00 00 00 00 00 00 00 01A4 00 00 00 00 00 00 00 00 00 00 00 00 01B0 00 00 00 00 00 00 00 00 00 00 00 00 01BC 00 00 00 00 00 00 00 00 00 00 00 00 01C8 00 00 00 00 00 00 00 00 00 00 00 00 01D4 00 00 00 00 00 00 00 00 00 00 00 00 01E0 00 00 00 00 00 00 00 00 02 14 18 01 01EC 00 00 00 00 80 80 8a 60 68 e5 b5 19 01F8 8a 00 00 00 00 00 00 00 01e8 itemCount [1 byte] 0x02 in this case 01e9 maxItemCount [1 byte] 0x14 constant 01ea itemSize [1 byte] 0x18 constant 01eb nodeLevel [1 byte] 0x01 in this case 01f8 backPointer [8 bytes] 0x00008a in this case
The itemCount specifies the number of 24 byte records that are active. The nodeLevel is non-zero for this style of nodes. The leaf nodes have a different format. The backPointer must match the backPointer from the triple that pointed to this node.
Each item in this node is a triple of (I_ID, backPointer, offset) where the offset points to the next deeper node in the tree, the backPointer value must match the backPointer in that deeper node, and I_ID is the lowest I_ID value in the subtree.
The 32 bit index1 b-tree leaf nodes are 512 byte blocks with the following format.
0000 04 00 00 00 00 58 00 00 64 00 0f 00 000c 08 00 00 00 80 58 00 00 ac 00 06 00 0018 0c 00 00 00 40 59 00 00 ac 00 06 00 0024 10 00 00 00 00 5a 00 00 bc 00 03 00 0030 14 00 00 00 00 5b 00 00 a4 00 02 00 003c 18 00 00 00 c0 5b 00 00 64 00 02 00 0048 1c 00 00 00 40 5c 00 00 5c 00 02 00 0054 50 00 00 00 80 62 00 00 60 00 02 00 0060 74 00 00 00 00 77 00 00 5e 00 02 00 006c 7c 00 00 00 80 77 00 00 66 00 02 00 0078 84 00 00 00 00 76 00 00 ca 00 02 00 0084 88 00 00 00 00 63 00 00 52 00 02 00 0090 90 00 00 00 00 79 00 00 58 00 02 00 009c cc 00 00 00 c0 61 00 00 76 00 02 00 00a8 e0 00 00 00 00 61 00 00 74 00 02 00 00b4 f4 00 00 00 80 65 00 00 6e 00 02 00 00c0 8c 01 00 00 40 60 00 00 70 00 02 00 00cc ea 01 00 00 80 61 00 00 10 00 02 00 00d8 ec 01 00 00 40 8a 00 00 f3 01 02 00 00e4 f0 01 00 00 80 93 00 00 f4 1f 02 00 00f0 fa 01 00 00 c0 7f 00 00 10 00 02 00 00fc 00 02 00 00 00 89 00 00 34 01 02 00 0108 1c 02 00 00 40 ec 00 00 12 06 02 00 0114 22 02 00 00 00 84 00 00 10 00 02 00 0120 24 02 00 00 c0 ea 00 00 3c 01 02 00 012c 40 02 00 00 00 f4 00 00 0a 06 02 00 0138 46 02 00 00 40 8c 00 00 10 00 02 00 0144 48 02 00 00 80 f2 00 00 36 01 02 00 0150 64 02 00 00 80 fb 00 00 bf 07 02 00 015c 6a 02 00 00 80 63 00 00 10 00 02 00 0168 6c 02 00 00 40 fa 00 00 2a 01 02 00 0174 6c 02 00 00 40 fa 00 00 2a 01 02 00 0180 6c 02 00 00 40 fa 00 00 2a 01 02 00 018c 6c 02 00 00 40 fa 00 00 2a 01 02 00 0198 6c 02 00 00 40 fa 00 00 2a 01 02 00 01a4 6c 02 00 00 40 fa 00 00 2a 01 02 00 01b0 64 02 00 00 80 fb 00 00 bf 07 02 00 01bc 64 02 00 00 80 fb 00 00 bf 07 02 00 01c8 64 02 00 00 80 fb 00 00 bf 07 02 00 01d4 64 02 00 00 80 fb 00 00 bf 07 02 00 01e0 64 02 00 00 80 fb 00 00 bf 07 02 00 01ec 00 00 00 00 1f 29 0c 00 80 80 5b b3 01f8 5a 67 01 00 4f ae 70 a7 01f0 itemCount [1 byte] 0x1f in this case 01f1 maxItemCount [1 byte] 0x29 constant 01f2 itemSize [1 byte] 0x0c constant 01f3 nodeLevel [1 byte] 0x00 defines a leaf node 01f8 backPointer [4 bytes] 0x01675a in this case
The itemCount specifies the number of 12 byte records that are active. The nodeLevel is zero for these leaf nodes. The backPointer must match the backPointer from the triple that pointed to this node.
Each item in this node is a tuple of (I_ID, offset, size, unknown) The two low order bits of the I_ID value seem to be flags. I have never seen a case with bit zero set. Bit one indicates that the item is not encrypted. Note that references to these I_ID values elsewhere may have the low order bit set (and I don't know what that means), but when we do the search in this tree we need to clear that bit so that we can find the correct item.
The 64 bit index1 b-tree leaf nodes are 512 byte blocks with the following format.
0000 04 00 00 00 00 00 00 00 00 58 00 00 000C 00 00 00 00 6c 00 05 00 00 00 00 00 0018 08 00 00 00 00 00 00 00 80 58 00 00 0024 00 00 00 00 b4 00 06 00 d8 22 37 08 0030 0c 00 00 00 00 00 00 00 80 59 00 00 003C 00 00 00 00 ac 00 07 00 d8 22 37 08 0048 10 00 00 00 00 00 00 00 40 5a 00 00 0054 00 00 00 00 bc 00 03 00 d8 22 37 08 0060 14 00 00 00 00 00 00 00 40 5b 00 00 006C 00 00 00 00 a4 00 02 00 d8 22 37 08 0078 18 00 00 00 00 00 00 00 00 5c 00 00 0084 00 00 00 00 64 00 02 00 d8 22 37 08 0090 1c 00 00 00 00 00 00 00 80 5c 00 00 009C 00 00 00 00 5c 00 02 00 d8 22 37 08 00A8 24 00 00 00 00 00 00 00 80 5d 00 00 00B4 00 00 00 00 72 00 02 00 d8 22 37 08 00C0 34 00 00 00 00 00 00 00 00 70 00 00 00CC 00 00 00 00 8c 00 02 00 00 0d 00 00 00D8 38 00 00 00 00 00 00 00 c0 71 00 00 00E4 00 00 00 00 5c 00 02 00 d8 22 9c 00 00F0 40 00 00 00 00 00 00 00 40 72 00 00 00FC 00 00 00 00 26 00 02 00 d8 22 9c 00 0108 4c 00 00 00 00 00 00 00 80 5f 00 00 0114 00 00 00 00 3e 00 02 00 d8 22 9c 00 0120 5c 00 00 00 00 00 00 00 c0 76 00 00 012C 00 00 00 00 8c 00 02 00 d8 22 9c 00 0138 64 00 00 00 00 00 00 00 40 75 00 00 0144 00 00 00 00 76 00 02 00 d8 22 9c 00 0150 6c 00 00 00 00 00 00 00 c0 73 00 00 015C 00 00 00 00 5e 00 02 00 d8 22 9c 00 0168 70 00 00 00 00 00 00 00 80 72 00 00 0174 00 00 00 00 1e 01 02 00 d8 22 9c 00 0180 70 00 00 00 00 00 00 00 80 72 00 00 018C 00 00 00 00 1e 01 02 00 d8 22 9c 00 0198 70 00 00 00 00 00 00 00 80 72 00 00 01A4 00 00 00 00 1e 01 02 00 d8 22 9c 00 01B0 74 00 00 00 00 00 00 00 40 74 00 00 01BC 00 00 00 00 e0 00 02 00 d8 22 9c 00 01C8 7c 00 00 00 00 00 00 00 80 77 00 00 01D4 00 00 00 00 dc 00 02 00 d8 22 9c 00 01E0 00 00 00 00 00 00 00 00 10 14 18 00 01EC 00 00 00 00 80 80 88 48 3f 50 0b 04 01F8 88 00 00 00 00 00 00 00 01e8 itemCount [1 byte] 0x10 in this case 01e9 maxItemCount [1 byte] 0x14 constant 01ea itemSize [1 byte] 0x18 constant 01eb nodeLevel [1 byte] 0x00 defines a leaf node 01f8 backPointer [8 bytes] 0x000088 in this case
The itemCount specifies the number of 24 byte records that are active. The nodeLevel is zero for these leaf nodes. The backPointer must match the backPointer from the triple that pointed to this node.
Each item in this node is a tuple of (I_ID, offset, size, unknown) The two low order bits of the I_ID value seem to be flags. I have never seen a case with bit zero set. Bit one indicates that the item is not encrypted. Note that references to these I_ID values elsewhere may have the low order bit set (and I don't know what that means), but when we do the search in this tree we need to clear that bit so that we can find the correct item.
The 32 bit index2 b-tree nodes are 512 byte blocks with the following format.
0000 21 00 00 00 bb 1e 02 00 00 e2 0b 00 000c 64 78 20 00 8c 1e 02 00 00 dc 0b 00 0018 00 00 00 00 00 00 00 00 00 00 00 00 0024 00 00 00 00 00 00 00 00 00 00 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 003c 00 00 00 00 00 00 00 00 00 00 00 00 0048 00 00 00 00 00 00 00 00 00 00 00 00 0054 00 00 00 00 00 00 00 00 00 00 00 00 0060 00 00 00 00 00 00 00 00 00 00 00 00 006c 00 00 00 00 00 00 00 00 00 00 00 00 0078 00 00 00 00 00 00 00 00 00 00 00 00 0084 00 00 00 00 00 00 00 00 00 00 00 00 0090 00 00 00 00 00 00 00 00 00 00 00 00 009c 00 00 00 00 00 00 00 00 00 00 00 00 00a8 00 00 00 00 00 00 00 00 00 00 00 00 00b4 00 00 00 00 00 00 00 00 00 00 00 00 00c0 00 00 00 00 00 00 00 00 00 00 00 00 00cc 00 00 00 00 00 00 00 00 00 00 00 00 00d8 00 00 00 00 00 00 00 00 00 00 00 00 00e4 00 00 00 00 00 00 00 00 00 00 00 00 00f0 00 00 00 00 00 00 00 00 00 00 00 00 00fc 00 00 00 00 00 00 00 00 00 00 00 00 0108 00 00 00 00 00 00 00 00 00 00 00 00 0114 00 00 00 00 00 00 00 00 00 00 00 00 0120 00 00 00 00 00 00 00 00 00 00 00 00 012c 00 00 00 00 00 00 00 00 00 00 00 00 0138 00 00 00 00 00 00 00 00 00 00 00 00 0144 00 00 00 00 00 00 00 00 00 00 00 00 0150 00 00 00 00 00 00 00 00 00 00 00 00 015c 00 00 00 00 00 00 00 00 00 00 00 00 0168 00 00 00 00 00 00 00 00 00 00 00 00 0174 00 00 00 00 00 00 00 00 00 00 00 00 0180 00 00 00 00 00 00 00 00 00 00 00 00 018c 00 00 00 00 00 00 00 00 00 00 00 00 0198 00 00 00 00 00 00 00 00 00 00 00 00 01a4 00 00 00 00 00 00 00 00 00 00 00 00 01b0 00 00 00 00 00 00 00 00 00 00 00 00 01bc 00 00 00 00 00 00 00 00 00 00 00 00 01c8 00 00 00 00 00 00 00 00 00 00 00 00 01d4 00 00 00 00 00 00 00 00 00 00 00 00 01e0 00 00 00 00 00 00 00 00 00 00 00 00 01ec 00 00 00 00 02 29 0c 02 81 81 b2 60 01f8 bc 1e 02 00 7e 70 dc e3 01f0 itemCount [1 byte] 0x02 in this case 01f1 maxItemCount [1 byte] 0x29 constant 01f2 itemSize [1 byte] 0x0c constant 01f3 nodeLevel [1 byte] 0x02 in this case 01f8 backPointer [4 bytes] 0x021ebc in this case
The itemCount specifies the number of 12 byte records that are active. The nodeLevel is non-zero for this style of nodes. The leaf nodes have a different format. The backPointer must match the backPointer from the triple that pointed to this node.
Each item in this node is a triple of (D_ID, backPointer, offset) where the offset points to the next deeper node in the tree, the backPointer value must match the backPointer in that deeper node, and D_ID is the lowest D_ID value in the subtree.
The 64 bit index2 b-tree nodes are 512 byte blocks with the following format.
0000 21 00 00 00 00 00 00 00 77 00 00 00 000C 00 00 00 00 00 56 00 00 00 00 00 00 0018 4c 06 00 00 00 00 00 00 82 00 00 00 0024 00 00 00 00 00 68 00 00 00 00 00 00 0030 4f 80 00 00 00 00 00 00 84 00 00 00 003C 00 00 00 00 00 6e 00 00 00 00 00 00 0048 00 00 00 00 00 00 00 00 00 00 00 00 0054 00 00 00 00 00 00 00 00 00 00 00 00 0060 00 00 00 00 00 00 00 00 00 00 00 00 006C 00 00 00 00 00 00 00 00 00 00 00 00 0078 00 00 00 00 00 00 00 00 00 00 00 00 0084 00 00 00 00 00 00 00 00 00 00 00 00 0090 00 00 00 00 00 00 00 00 00 00 00 00 009C 00 00 00 00 00 00 00 00 00 00 00 00 00A8 00 00 00 00 00 00 00 00 00 00 00 00 00B4 00 00 00 00 00 00 00 00 00 00 00 00 00C0 00 00 00 00 00 00 00 00 00 00 00 00 00CC 00 00 00 00 00 00 00 00 00 00 00 00 00D8 00 00 00 00 00 00 00 00 00 00 00 00 00E4 00 00 00 00 00 00 00 00 00 00 00 00 00F0 00 00 00 00 00 00 00 00 00 00 00 00 00FC 00 00 00 00 00 00 00 00 00 00 00 00 0108 00 00 00 00 00 00 00 00 00 00 00 00 0114 00 00 00 00 00 00 00 00 00 00 00 00 0120 00 00 00 00 00 00 00 00 00 00 00 00 012C 00 00 00 00 00 00 00 00 00 00 00 00 0138 00 00 00 00 00 00 00 00 00 00 00 00 0144 00 00 00 00 00 00 00 00 00 00 00 00 0150 00 00 00 00 00 00 00 00 00 00 00 00 015C 00 00 00 00 00 00 00 00 00 00 00 00 0168 00 00 00 00 00 00 00 00 00 00 00 00 0174 00 00 00 00 00 00 00 00 00 00 00 00 0180 00 00 00 00 00 00 00 00 00 00 00 00 018C 00 00 00 00 00 00 00 00 00 00 00 00 0198 00 00 00 00 00 00 00 00 00 00 00 00 01A4 00 00 00 00 00 00 00 00 00 00 00 00 01B0 00 00 00 00 00 00 00 00 00 00 00 00 01BC 00 00 00 00 00 00 00 00 00 00 00 00 01C8 00 00 00 00 00 00 00 00 00 00 00 00 01D4 00 00 00 00 00 00 00 00 00 00 00 00 01E0 00 00 00 00 00 00 00 00 03 14 18 01 01EC 00 00 00 00 81 81 83 6a 49 da f3 d3 01F8 83 00 00 00 00 00 00 00 01e8 itemCount [1 byte] 0x03 in this case 01e9 maxItemCount [1 byte] 0x14 constant 01ea itemSize [1 byte] 0x18 constant 01eb nodeLevel [1 byte] 0x01 in this case 01f8 backPointer [8 bytes] 0x000083 in this case
The itemCount specifies the number of 24 byte records that are active. The nodeLevel is non-zero for this style of nodes. The leaf nodes have a different format. The backPointer must match the backPointer from the triple that pointed to this node.
Each item in this node is a triple of (D_ID, backPointer, offset) where the offset points to the next deeper node in the tree, the backPointer value must match the backPointer in that deeper node, and D_ID is the lowest D_ID value in the subtree.
The 32 bit index2 b-tree leaf nodes are 512 byte blocks with the following format.
0000 21 00 00 00 38 e6 00 00 00 00 00 00 00 00 00 00 0010 61 00 00 00 2c a8 02 00 36 a8 02 00 00 00 00 00 0020 22 01 00 00 20 a2 02 00 00 00 00 00 22 01 00 00 0030 2d 01 00 00 88 7b 03 00 00 00 00 00 00 00 00 00 0040 2e 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 0050 2f 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 0060 e1 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0070 01 02 00 00 b4 e4 02 00 00 00 00 00 00 00 00 00 0080 61 02 00 00 a0 e4 02 00 00 00 00 00 00 00 00 00 0090 0d 06 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00A0 0e 06 00 00 08 00 00 00 00 00 00 00 00 00 00 00 00B0 0f 06 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 00C0 10 06 00 00 10 00 00 00 00 00 00 00 00 00 00 00 00D0 2b 06 00 00 84 00 00 00 00 00 00 00 00 00 00 00 00E0 4c 06 00 00 1c 00 00 00 00 00 00 00 00 00 00 00 00F0 71 06 00 00 18 00 00 00 00 00 00 00 00 00 00 00 0100 92 06 00 00 14 00 00 00 00 00 00 00 00 00 00 00 0110 23 22 00 00 14 a0 02 00 00 00 00 00 22 01 00 00 0120 26 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0130 27 22 00 00 1c a0 02 00 00 00 00 00 00 00 00 00 0140 22 80 00 00 50 00 00 00 00 00 00 00 22 01 00 00 0150 2d 80 00 00 f8 9f 02 00 00 00 00 00 00 00 00 00 0160 2e 80 00 00 08 00 00 00 00 00 00 00 00 00 00 00 0170 2f 80 00 00 34 e6 00 00 00 00 00 00 00 00 00 00 0180 42 80 00 00 3c 6d 02 00 00 00 00 00 22 80 00 00 0190 4d 80 00 00 04 00 00 00 00 00 00 00 00 00 00 00 01A0 4e 80 00 00 10 6d 02 00 00 00 00 00 00 00 00 00 01B0 4f 80 00 00 ec 23 00 00 00 00 00 00 00 00 00 00 01C0 62 80 00 00 38 78 02 00 00 00 00 00 22 01 00 00 01D0 6d 80 00 00 34 78 02 00 00 00 00 00 00 00 00 00 01E0 6e 80 00 00 08 00 00 00 00 00 00 00 00 00 00 00 01F0 10 1f 10 00 81 81 a0 9a ae 1e 02 00 89 44 6a 0f 01f0 itemCount [1 byte] 0x10 in this case 01f1 maxItemCount [1 byte] 0x1f constant 01f2 itemSize [1 byte] 0x10 constant 01f3 nodeLevel [1 byte] 0x00 in this case 01f8 backPointer [4 bytes] 0x021eae in this case
The itemCount specifies the number of 16 byte records that are active. The nodeLevel is zero for these leaf nodes. The backPointer must match the backPointer from the triple that pointed to this node.
Each item in this node is a tuple of (D_ID, DESC-I_ID, TREE-I_ID, PARENT-D_ID) The DESC-I_ID points to the main data for this item (Associated Descriptor Items 0x7cec, 0xbcec, or 0x0101) via the index1 tree. The TREE-I_ID is zero or points to an Associated Tree Item 0x0002 via the index1 tree. The PARENT-D_ID points to the parent of this item in this index2 tree.
The 64 bit index2 b-tree leaf nodes are 512 byte blocks with the following format.
0000 21 00 00 00 00 00 00 00 74 00 00 00 00 00 00 00 0010 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 0020 61 00 00 00 00 00 00 00 34 00 00 00 00 00 00 00 0030 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 0040 22 01 00 00 00 00 00 00 4c 00 00 00 00 00 00 00 0050 00 00 00 00 00 00 00 00 22 01 00 00 02 00 00 00 0060 2d 01 00 00 00 00 00 00 70 00 00 00 00 00 00 00 0070 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 0080 2e 01 00 00 00 00 00 00 08 00 00 00 00 00 00 00 0090 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 00A0 2f 01 00 00 00 00 00 00 0c 00 00 00 00 00 00 00 00B0 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 00C0 e1 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00D0 00 00 00 00 00 00 00 00 00 00 00 00 d8 e3 13 00 00E0 01 02 00 00 00 00 00 00 8c 00 00 00 00 00 00 00 00F0 00 00 00 00 00 00 00 00 00 00 00 00 b0 e3 13 00 0100 61 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0110 00 00 00 00 00 00 00 00 00 00 00 00 d8 e3 13 00 0120 0d 06 00 00 00 00 00 00 04 00 00 00 00 00 00 00 0130 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 0140 0e 06 00 00 00 00 00 00 08 00 00 00 00 00 00 00 0150 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 0160 0f 06 00 00 00 00 00 00 0c 00 00 00 00 00 00 00 0170 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 0180 10 06 00 00 00 00 00 00 10 00 00 00 00 00 00 00 0190 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 01A0 2b 06 00 00 00 00 00 00 24 00 00 00 00 00 00 00 01B0 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 01C0 71 06 00 00 00 00 00 00 18 00 00 00 00 00 00 00 01D0 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 01E0 00 00 00 00 00 00 00 00 0e 0f 20 00 00 00 00 00 01F0 81 81 77 56 f8 32 43 49 77 00 00 00 00 00 00 00 01e8 itemCount [1 byte] 0x0e in this case 01e9 maxItemCount [1 byte] 0x0f constant 01ea itemSize [1 byte] 0x20 constant 01eb nodeLevel [1 byte] 0x00 defines a leaf node 01f8 backPointer [8 bytes] 0x000077 in this case
The itemCount specifies the number of 32 byte records that are active. The nodeLevel is zero for these leaf nodes. The backPointer must match the backPointer from the triple that pointed to this node.
Each item in this node is a tuple of (D_ID, DESC-I_ID, TREE-I_ID, PARENT-D_ID) The DESC-I_ID points to the main data for this item (Associated Descriptor Items 0x7cec, 0xbcec, or 0x0101) via the index1 tree. The TREE-I_ID is zero or points to an Associated Tree Item 0x0002 via the index1 tree. The PARENT-D_ID points to the parent of this item in this index2 tree.
A D_ID value may point to an entry in the index2 tree with a non-zero TREE-I_ID which points to this descriptor block via the index1 tree. It maps local ID2 values (referenced in the main data for the original D_ID item) to I_ID values. This descriptor block contains triples of (ID2, I_ID, CHILD-I_ID) where the local ID2 data can be found via I_ID, and CHILD-I_ID is either zero or it points to another Associated Tree Item via the index1 tree.
In the above 32 bit leaf node, we have a tuple of (0x61, 0x02a82c, 0x02a836, 0) 0x02a836 is the I_ID of the associated tree, and we can lookup that I_ID value in the index1 b-tree to find the (offset,size) of the data in the .pst file.
0000 02 00 01 00 9f 81 00 00 30 a8 02 00 00 00 00 00 0000 signature [2 bytes] 0x0002 constant 0002 count [2 bytes] 0x0001 in this case repeating 0004 id2 [4 bytes] 0x00819f in this case 0008 i_id [4 bytes] 0x02a830 in this case 000c child-i_id [4 bytes] 0 in this case
This descriptor block contains a tree that maps local ID2 values to I_ID entries, similar to the 32 bit version described above.
0000 02 00 02 00 00 00 00 00 92 06 00 00 00 00 00 00 0010 a8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0020 3f 80 00 00 00 00 00 00 98 00 00 00 00 00 00 00 0030 00 00 00 00 00 00 00 00 0000 signature [2 bytes] 0x0002 constant 0002 count [2 bytes] 0x0002 in this case 0004 unknown [4 bytes] 0 possibly constant repeating 0008 id2 [4 bytes] 0x000692 in this case 000c unknown1 [2 bytes] 0 may be a count or size 000e unknown2 [2 bytes] 0 may be a count or size 0010 i_id [8 bytes] 0x0000a8 in this case 0018 child-i_id [8 bytes] 0 in this case
Contains information about the item, which may be email, contact, or other outlook types. In the above leaf node, we have a tuple of (0x21, 0x00e638, 0, 0) 0x00e638 is the I_ID of the associated descriptor, and we can lookup that I_ID value in the index1 b-tree to find the (offset,size) of the data in the .pst file. This descriptor is eventually decoded to a list of MAPI elements.
0000 3c 01 ec bc 20 00 00 00 00 00 00 00 b5 02 06 00 0010 40 00 00 00 f9 0f 02 01 60 00 00 00 01 30 1e 00 0020 80 00 00 00 04 30 1e 00 00 00 00 00 df 35 03 00 0030 ff 00 00 00 e0 35 02 01 a0 00 00 00 e2 35 02 01 0040 e0 00 00 00 e3 35 02 01 c0 00 00 00 e4 35 02 01 0050 00 01 00 00 e5 35 02 01 20 01 00 00 e6 35 02 01 0060 40 01 00 00 e7 35 02 01 60 01 00 00 1e 66 0b 00 0070 00 00 00 00 ff 67 03 00 00 00 00 00 d2 7f 17 d8 0080 64 8c d5 11 83 24 00 50 04 86 95 45 53 74 61 6e 0090 6c 65 79 00 00 00 00 d2 7f 17 d8 64 8c d5 11 83 00A0 24 00 50 04 86 95 45 22 80 00 00 00 00 00 00 d2 00B0 7f 17 d8 64 8c d5 11 83 24 00 50 04 86 95 45 42 00C0 80 00 00 00 00 00 00 d2 7f 17 d8 64 8c d5 11 83 00D0 24 00 50 04 86 95 45 a2 80 00 00 00 00 00 00 d2 00E0 7f 17 d8 64 8c d5 11 83 24 00 50 04 86 95 45 c2 00F0 80 00 00 00 00 00 00 d2 7f 17 d8 64 8c d5 11 83 0100 24 00 50 04 86 95 45 e2 80 00 00 00 00 00 00 d2 0110 7f 17 d8 64 8c d5 11 83 24 00 50 04 86 95 45 02 0120 81 00 00 00 00 00 00 d2 7f 17 d8 64 8c d5 11 83 0130 24 00 50 04 86 95 45 62 80 00 00 00 0b 00 00 00 0140 0c 00 14 00 7c 00 8c 00 93 00 ab 00 c3 00 db 00 0150 f3 00 0b 01 23 01 3b 01 0000 indexOffset [2 bytes] 0x013c in this case 0002 signature [2 bytes] 0xbcec constant 0004 b5offset [4 bytes] 0x0020 index reference
Note the signature of 0xbcec. There are other descriptor block formats with other signatures. Note the indexOffset of 0x013c - starting at that position in the descriptor block, we have an array of two byte integers. The first integer (0x000b) is a (count-1) of the number of overlapping pairs following the count. The first pair is (0, 0xc), the next pair is (0xc, 0x14) and the last (12th) pair is (0x123, 0x13b). These pairs are (start,end+1) offsets of items in this block. So we have count+2 integers following the count value.
Note the b5offset of 0x0020, which is a type that I will call an index reference. Such index references have at least two different forms, and may point to data either in this block, or in some other block. External pointer references have the low order 4 bits all set, and are ID2 values that can be used to fetch data. This value of 0x0020 is an internal pointer reference, which needs to be right shifted by 4 bits to become 0x0002, which is then a byte offset to be added to the above indexOffset plus two (to skip the count), so it points to the (0xc, 0x14) pair.
So far we have only described internal index references where the high order 16 bits are zero. That suffices for single descriptor blocks. But in the case of the type 0x0101 descriptor block, we have an array of subblocks. In this case, the high order 16 bits of an internal index reference are used to select the subblock. Each subblock starts with a 16 bit indexOffset which points to the count and array of 16 bit integer pairs which are offsets in the current subblock.
Finally, we have the offset and size of the "b5" block located at offset 0xc with a size of 8 bytes in this descriptor block. The "b5" block has the following format:
0000 signature [2 bytes] 0x02b5 constant 0002 datasize [2 bytes] 0x0006 constant +2 for 8 byte entries 0004 descoffset [4 bytes] 0x0040 index reference
Note the descoffset of 0x0040, which again is an index reference. In this case, it is an internal pointer reference, which needs to be right shifted by 4 bits to become 0x0004, which is then a byte offset to be added to the above indexOffset plus two (to skip the count), so it points to the (0x14, 0x7c) pair. The datasize (6) plus the b5 code (02) gives the size of the entries, in this case 8 bytes. We now have the offset 0x14 of the descriptor array, composed of 8 byte entries that describe MAPI elements. Each descriptor entry has the following format:
0000 itemType [2 bytes] 0002 referenceType [2 bytes] 0004 value [4 bytes]
For some reference types (2, 3, 0xb) the value is used directly. Otherwise, the value is an index reference, which is either an ID2 value, or an offset, to be right shifted by 4 bits and used to fetch a pair from the index table to find the offset and size of the item in this descriptor block.
The following reference types are known, but not all of these are implemented in the code yet.
0x0002 - Signed 16bit value 0x0003 - Signed 32bit value 0x0004 - 4-byte floating point 0x0005 - Floating point double 0x0006 - Signed 64-bit int 0x0007 - Application Time 0x000A - 32-bit error value 0x000B - Boolean (non-zero = true) 0x000D - Embedded Object 0x0014 - 8-byte signed integer (64-bit) 0x001E - Null terminated String 0x001F - Unicode string 0x0040 - Systime - Filetime structure 0x0048 - OLE Guid 0x0102 - Binary data 0x1003 - Array of 32bit values 0x1014 - Array of 64bit values 0x101E - Array of Strings 0x1102 - Array of Binary data
The following item types are known, but not all of these are implemented in the code yet.
0x0002  Alternate recipient allowed
0x0003  Extended Attributes Table
0x0017  Importance Level
0x001a  IPM Context, message class
0x0023  Global delivery report requested
0x0026  Priority
0x0029  Read Receipt
0x002b  Reassignment Prohibited
0x002e  Original Sensitivity
0x0032  Report time
0x0036  Sensitivity
0x0037  Email Subject
0x0039  Client submit time / date sent
0x003b  Outlook Address of Sender
0x003f  Outlook structure describing the recipient
0x0040  Name of the Outlook recipient structure
0x0041  Outlook structure describing the sender
0x0042  Name of the Outlook sender structure
0x0043  Another structure describing the recipient
0x0044  Name of the second recipient structure
0x004f  Reply-To Outlook Structure
0x0050  Name of the Reply-To structure
0x0051  Outlook Name of recipient
0x0052  Second Outlook name of recipient
0x0057  My address in TO field
0x0058  My address in CC field
0x0059  Message addressed to me
0x0063  Response requested
0x0064  Sender's Address access method (SMTP, EX)
0x0065  Sender's Address
0x0070  Conversation topic, processed subject (with Fwd:, Re, ... removed)
0x0071  Conversation index
0x0072  Original display BCC
0x0073  Original display CC
0x0074  Original display TO
0x0075  Recipient Address Access Method (SMTP, EX)
0x0076  Recipient's Address
0x0077  Second Recipient Access Method (SMTP, EX)
0x0078  Second Recipient Address
0x007d  Email Header. This is the header that was attached to the email
0x0c04  NDR Reason code
0x0c05  NDR Diag code
0x0c06  Non-receipt notification requested
0x0c17  Reply Requested
0x0c19  Second sender structure
0x0c1a  Name of second sender structure
0x0c1b  Supplementary info
0x0c1d  Second outlook name of sender
0x0c1e  Second sender access method (SMTP, EX)
0x0c1f  Second Sender Address
0x0c20  NDR status code
0x0e01  Delete after submit
0x0e02  BCC Addresses
0x0e03  CC Addresses
0x0e04  SentTo Address
0x0e06  Date.
0x0e07  Flag bits
            0x01 - Read
            0x02 - Unmodified
            0x04 - Submit
            0x08 - Unsent
            0x10 - Has Attachments
            0x20 - From Me
            0x40 - Associated
            0x80 - Resend
            0x100 - RN Pending
            0x200 - NRN Pending
0x0e08  Message Size
0x0e0a  Sentmail EntryID
0x0e1d  Normalized subject
0x0e1f  Compressed RTF in Sync
0x0e20  Attachment Size
0x0ff9  binary record header
0x1000  Plain Text Email Body. Does not exist if the email doesn't have a plain text version
0x1001  Report Text
0x1006  RTF Sync Body CRC
0x1007  RTF Sync Body character count
0x1008  RTF Sync body tag
0x1009  RTF Compressed body
0x1010  RTF whitespace prefix count
0x1011  RTF whitespace tailing count
0x1013  HTML Email Body. Does not exist if the email doesn't have an HTML version
0x1035  Message ID
0x1042  In-Reply-To or Parent's Message ID
0x1046  Return Path
0x3001  Folder Name? I have also seen this value used for the contacts record
0x3002  Address Type
0x3003  Contact Address
0x3004  Comment
0x3007  Date item creation
0x3008  Date item modification
0x300b  binary record header
0x35df  Valid Folder Mask
0x35e0  binary record contains a reference to "Top of Personal Folder" item
0x35e2  binary record contains a reference to default outbox item
0x35e3  binary record contains a reference to "Deleted Items" item
0x35e4  binary record contains a reference to sent items folder item
0x35e5  binary record contains a reference to user views folder item
0x35e6  binary record contains a reference to common views folder item
0x35e7  binary record contains a reference to "Search Root" item
0x3602  the number of emails stored in a folder
0x3603  the number of unread emails in a folder
0x360a  Has Subfolders
0x3613  the folder content description
0x3617  Associate Content count
0x3701  Binary Data attachment
0x3704  Attachment Filename
0x3705  Attachement method
0x3707  Attachment Filename long
0x370b  Attachment Position
0x370e  Attachment mime encoding
0x3710  Attachment mime Sequence
0x3712  Content ID
0x3a00  Contact's Account name
0x3a01  Contact Alternate Recipient
0x3a02  Callback telephone number
0x3a03  Message Conversion Prohibited
0x3a05  Contacts Suffix
0x3a06  Contacts First Name
0x3a07  Contacts Government ID Number
0x3a08  Business Telephone Number
0x3a09  Home Telephone Number
0x3a0a  Contacts Initials
0x3a0b  Keyword
0x3a0c  Contact's Language
0x3a0d  Contact's Location
0x3a0e  Mail Permission
0x3a0f  MHS Common Name
0x3a10  Organizational ID #
0x3a11  Contacts Surname
0x3a12  original entry id
0x3a13  original display name
0x3a14  original search key
0x3a15  Default Postal Address
0x3a16  Company Name
0x3a17  Job Title
0x3a18  Department Name
0x3a19  Office Location
0x3a1a  Primary Telephone
0x3a1b  Business Phone Number 2
0x3a1c  Mobile Phone Number
0x3a1d  Radio Phone Number
0x3a1e  Car Phone Number
0x3a1f  Other Phone Number
0x3a20  Transmittable Display Name
0x3a21  Pager Phone Number
0x3a22  user certificate
0x3a23  Primary Fax Number
0x3a24  Business Fax Number
0x3a25  Home Fax Number
0x3a26  Business Address Country
0x3a27  Business Address City
0x3a28  Business Address State
0x3a29  Business Address Street
0x3a2a  Business Postal Code
0x3a2b  Business PO Box
0x3a2c  Telex Number
0x3a2d  ISDN Number
0x3a2e  Assistant Phone Number
0x3a2f  Home Phone 2
0x3a30  Assistant's Name
0x3a40  Can receive Rich Text
0x3a41  Wedding Anniversary
0x3a42  Birthday
0x3a43  Hobbies
0x3a44  Middle Name
0x3a45  Display Name Prefix (Title)
0x3a46  Profession
0x3a47  Preferred By Name
0x3a48  Spouse's Name
0x3a49  Computer Network Name
0x3a4a  Customer ID
0x3a4b  TTY/TDD Phone
0x3a4c  Ftp Site
0x3a4d  Gender
0x3a4e  Manager's Name
0x3a4f  Nickname
0x3a50  Personal Home Page
0x3a51  Business Home Page
0x3a57  Company Main Phone
0x3a58  childrens names
0x3a59  Home Address City
0x3a5a  Home Address Country
0x3a5b  Home Address Postal Code
0x3a5c  Home Address State or Province
0x3a5d  Home Address Street
0x3a5e  Home Address Post Office Box
0x3a5f  Other Address City
0x3a60  Other Address Country
0x3a61  Other Address Postal Code
0x3a62  Other Address State
0x3a63  Other Address Street
0x3a64  Other Address Post Office box
0x3fde  Internet code page
0x3ffd  Message code page
0x65e3  Entry ID
0x67f2  Attachment ID2 value
0x67ff  Password checksum
0x6f02  Secure HTML Body
0x6f04  Secure Text Body
0x7c07  Top of folders RecID
0x8005  Contact Fullname
0x801a  Home Address
0x801b  Business Address
0x801c  Other Address
0x8045  Work Address Street
0x8046  Work Address City
0x8047  Work Address State
0x8048  Work Address Postal Code
0x8049  Work Address Country
0x804a  Work Address Post Office Box
0x8082  Email Address 1 Transport
0x8083  Email Address 1 Address
0x8084  Email Address 1 Description
0x8085  Email Address 1 Record
0x8092  Email Address 2 Transport
0x8093  Email Address 2 Address
0x8094  Email Address 2 Description
0x8095  Email Address 2 Record
0x80a2  Email Address 3 Transport
0x80a3  Email Address 3 Address
0x80a4  Email Address 3 Description
0x80a5  Email Address 3 Record
0x80d8  Internet Free/Busy
0x8205  Appointment shows as
0x8208  Appointment Location
0x820d  Appointment start
0x820e  Appointment end
0x8214  Label for appointment
0x8215  All day appointment flag
0x8216  Appointment recurrence data
0x8223  Appointment is recurring
0x8231  Recurrence type
0x8232  Recurrence description
0x8234  TimeZone of times
0x8235  Recurrence Start Time
0x8236  Recurrence End Time
0x8501  Reminder minutes before appointment start
0x8503  Reminder alarm
0x8516  Common Time Start
0x8517  Common Time End
0x851f  Play reminder sound filename
0x8530  Followup String
0x8534  Mileage
0x8535  Billing Information
0x8554  Outlook Version
0x8560  Appointment Reminder Time
0x8700  Journal Entry Type
0x8706  Start Timestamp
0x8708  End Timestamp
0x8712  Journal Entry Type - duplicate?
This style of descriptor block is similar to the 0xbcec format. This descriptor is also eventually decoded to a list of MAPI elements.
0000 7a 01 ec 7c 40 00 00 00 00 00 00 00 b5 04 02 00 0010 60 00 00 00 7c 18 60 00 60 00 62 00 65 00 20 00 0020 00 00 80 00 00 00 00 00 00 00 03 00 20 0e 0c 00 0030 04 03 1e 00 01 30 2c 00 04 0b 1e 00 03 37 28 00 0040 04 0a 1e 00 04 37 14 00 04 05 03 00 05 37 10 00 0050 04 04 1e 00 07 37 24 00 04 09 1e 00 08 37 20 00 0060 04 08 02 01 0a 37 18 00 04 06 03 00 0b 37 08 00 0070 04 02 1e 00 0d 37 1c 00 04 07 1e 00 0e 37 40 00 0080 04 10 02 01 0f 37 30 00 04 0c 1e 00 11 37 34 00 0090 04 0d 1e 00 12 37 3c 00 04 0f 1e 00 13 37 38 00 00A0 04 0e 03 00 f2 67 00 00 04 00 03 00 f3 67 04 00 00B0 04 01 03 00 09 69 44 00 04 11 03 00 fa 7f 5c 00 00C0 04 15 40 00 fb 7f 4c 00 08 13 40 00 fc 7f 54 00 00D0 08 14 03 00 fd 7f 48 00 04 12 0b 00 fe 7f 60 00 00E0 01 16 0b 00 ff 7f 61 00 01 17 45 82 00 00 00 00 00F0 45 82 00 00 78 3c 00 00 ff ff ff ff 49 1e 00 00 0100 06 00 00 00 00 00 00 00 a0 00 00 00 00 00 00 00 0110 00 00 00 00 00 00 00 00 00 00 00 00 c0 00 00 00 0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0130 00 00 00 00 00 00 00 00 00 00 00 00 00 40 dd a3 0140 57 45 b3 0c 00 40 dd a3 57 45 b3 0c 02 00 00 00 0150 00 00 fa 10 3e 2a 86 48 86 f7 14 03 0a 03 02 01 0160 4a 2e 20 44 61 76 69 64 20 4b 61 72 61 6d 27 73 0170 20 42 69 72 74 68 64 61 79 00 06 00 00 00 0c 00 0180 14 00 ea 00 f0 00 55 01 60 01 79 01 0000 indexOffset [2 bytes] 0x017a in this case 0002 signature [2 bytes] 0x7cec constant 0004 7coffset [4 bytes] 0x0040 index reference
Note the signature of 0x7cec. There are other descriptor block formats with other signatures. Note the indexOffset of 0x017a - starting at that position in the descriptor block, we have an array of two byte integers. The first integer (0x0006) is a (count-1) of the number of overlapping pairs following the count. The first pair is (0, 0xc), the next pair is (0xc, 0x14) and the last (7th) pair is (0x160, 0x179). These pairs are (start,end+1) offsets of items in this block. So we have count+2 integers following the count value.
Note the 7coffset of 0x0040, which is an index reference. In this case, it is an internal reference pointer, which needs to be right shifted by 4 bits to become 0x0004, which is then a byte offset to be added to the above indexOffset plus two (to skip the count), so it points to the (0x14, 0xea) pair. We have the offset and size of the "7c" block located at offset 0x14 with a size of 214 bytes in this case. The "7c" block starts with a header with the following format:
0000 signature [1 bytes] 0x7c constant 0001 itemCount [1 bytes] 0x18 in this case 0002 unknown [2 bytes] 0x0060 in this case 0004 unknown [2 bytes] 0x0060 in this case 0006 unknown [2 bytes] 0x0062 in this case 0008 recordSize [2 bytes] 0x0065 in this case 000a b5Offset [4 bytes] 0x0020 index reference 000e index2Offset [4 bytes] 0x0080 index reference 0012 unknown [2 bytes] 0x0000 in this case 0014 unknown [2 bytes] 0x0000 in this case
Note the b5Offset of 0x0020, which is an index reference. In this case, it is an internal reference pointer, which needs to be right shifted by 4 bits to become 0x0002, which is then a byte offset to be added to the above indexOffset plus two (to skip the count), so it points to the (0xc, 0x14) pair. Finally, we have the offset and size of the "b5" block located at offset 0xc with a size of 8 bytes in this descriptor block. The "b5" block has the following format:
0000 signature [2 bytes] 0x04b5 constant 0002 datasize [2 bytes] 0x0002 +4 for 6 byte entries in this case 0004 descoffset [4 bytes] 0x0060 index reference
Note the descoffset of 0x0060, which again is an index reference. In this case, it is an internal pointer reference, which needs to be right shifted by 4 bits to become 0x0006, which is then a byte offset to be added to the above indexOffset plus two (to skip the count), so it points to the (0xea, 0xf0) pair. The datasize (2) plus the b5 code (04) gives the size of the entries, in this case 6 bytes. We now have the offset 0xea of an unused block of data in an unknown format, composed of 6 byte entries. That gives us (0xf0 - 0xea)/6 = 1, so we have a recordCount of one.
We have seen cases where the descoffset in the b5 block is zero, and the index2Offset in the 7c block is zero. This has been seen for objects that seem to be attachments on messages that have been read. Before the message was read, it did not have any attachments.
Note the index2Offset above of 0x0080, which again is an index reference. In this case, it is an internal pointer reference, which needs to be right shifted by 4 bits to become 0x0008, which is then a byte offset to be added to the above indexOffset plus two (to skip the count), so it points to the (0xf0, 0x155) pair. This is an array of tables of four byte integers. We will call these the IND2 tables. The size of each of these tables is specified by the recordSize field of the "7c" header. The number of these tables is the above recordCount value derived from the "b5" block.
Now the remaining data in the "7c" block after the header starts at offset 0x2a. There should be itemCount 8 byte items here, with the following format:
0000 referenceType [2 bytes] 0002 itemType [2 bytes] 0004 ind2Offset [2 bytes] 0006 size [1 byte] 0007 unknown [1 byte]
The ind2Offset is a byte offset into the current IND2 table of some value. If that is a four byte integer value, then once we fetch that, we have the same triple (item type, reference type, value) as we find in the 0xbcec style descriptor blocks. If not, then this value is used directly. These 8 byte descriptors are processed recordCount times, each time using the next IND2 table. The item and reference types are as described above for the 0xbcec format descriptor block.
This descriptor block contains a list of I_ID values. It is used when an I_ID (that would normally point to a type 0x7cec or 0xbcec descriptor block) contains more data than can fit in any single descriptor of those types. In this case, it points to a type 0x0101 block, which contains a list of I_ID values that themselves point to the actual descriptor blocks. The total length value in the 0x0101 header is the sum of the lengths of the blocks pointed to by the list of I_ID values. The result is an array of subblocks, that may contain index references where the high order 16 bits specify which descriptor subblock to use. Only the first descriptor subblock contains the signature (0xbcec or 0x7cec).
0000 01 01 02 00 26 28 00 00 18 77 0c 00 b8 04 00 00 0000 signature [2 bytes] 0x0101 constant 0002 count [2 bytes] 0x0002 in this case 0004 total length [4 bytes] 0x002826 in this case repeating 0008 i_id [4 bytes] 0x0c7718 in this case 000c i_id [4 bytes] 0x0004b8 in this case
This descriptor block contains a list of I_ID values, similar to the 32 bit version described above.
0000 01 01 02 00 ea 29 00 00 10 83 00 00 00 00 00 00 0010 1c 83 00 00 00 00 00 00 0000 signature [2 bytes] 0x0101 constant 0002 count [2 bytes] 0x0002 in this case 0004 total length [4 bytes] 0x0029ea in this case repeating 0008 i_id [8 bytes] 0x008310 in this case 0010 i_id [8 bytes] 0x00831c in this case